Publicacions més rellevants de la línia de recerca: Els problemes de tolerància a fallades en Teoria de Grafs

Referència: Balbuena, C., García-Vázquez, P. and Marcote, X. Sufficient conditions for λ^{\prime} optimality in graphs with girth g. J. Graph Theory, 52(1) (2006), pp. 73-86.

Abstract

For an edge $e=x y$ of a graph $G=(V, E)$, let $\xi(e)=d(x)+d(y)-2$ denote the number of edges that are adjacent to e and let $\xi(G)=\min \{\xi(e): e \in E\}$. The parameter $\xi(e)$ is called the edge-degree of e and $\xi(G)$ is called the minimum edge-degree of G. A set of edges S is called a restricted edge-cut of G provided that $G-S$ is a disconnected graph containing no isolated vertices. If the set of restricted edge-cuts of G, say R, is non-empty, the restricted edge-connectivity of G is defined by $\lambda^{\prime}(G)=\min \{S: S \in R\}$ and G is called λ^{\prime}-connected. In 1988, A.-H. Esfahanian and S. L. Hakimi [Inform. Process. Lett. 27(4) (1988), 195-199] showed that each connected graph of order at least 4 except a star is λ^{\prime}-connected and that $\lambda^{\prime}(G) \leq \xi(G)$. A graph G is called λ^{\prime}-optimal whenever $\lambda^{\prime}(G)=\xi(G)$. A. Hellwig and L. Volkmann [Discrete Math. 283(1-3) (2004), 113-120] proved that a λ^{\prime}-connected graph G is λ^{\prime}-optimal if every pair of non-adjacent vertices of G have at least 3 common neighbors. Note that this implies every λ^{\prime}-connected graph of diameter 2 is λ^{\prime}-optimal.

The main results in this article relate λ^{\prime}-optimality to the girth, minimum degree, and diameter of a graph as follows. Let G be a λ^{\prime}-connected graph with girth g, minimum degree $\delta \geq 2$, and diameter D. Then G is λ^{\prime}-optimal, if $D \leq g-2$. Furthermore, for odd girth g if all pairs u, v of vertices at distance $d(u, v) \geq g-1$ are such that $G\left[N_{(g-1) / 2}(u) \cap N_{(g-1) / 2}(v)\right]$ contains edges, then G is λ^{\prime}-optimal, where $N_{r}(v)$ denotes the set of vertices that are at a distance r from the vertex v and $G[S]$ denotes the subgraph induced by the set S.

Referència: Balbuena, C., Cera, M., Diánez, A., García-Vázquez, P. and Marcote, X. Diametergirth sufficient conditions for optimal extraconnectivity graphs. Discrete Math., 308(16) (2008), pp. 3526-3536.

Abstract

If G is a connected graph that contains a cut set X such that all connected components of $G-X$ have at least $r+1$ vertices, then define $k_{r}(G)$ to be the cardinality of the minimum such cutset. A connected graph G is k_{r}-connected, if $k_{r}(G)$ exists. Note that $k_{0}(G)$ coincides with $k(G)$, the classical connectivity, and $k_{0}(G) \leq k_{1}(G) \leq \ldots$. Finally, a graph G is defined to be k_{r}-optimal if $k_{r}(G) \geq \xi_{r}(G)$, where $\xi_{r}(G)$ denotes the minimum number of edges leaving a subtree of G having order $r+1$, that is, $\xi_{r}(G)=\min \left\{\sum_{v \in V(T)} d(v)-2 r: T \subseteq G\right.$ is a tree of order $\left.r+1\right\}$. Note that

$\xi_{1}(G)$ coincides with minimum edge-degree. Let $\operatorname{Per}(G)$ denote the subgraph of G induced by its peripheral vertices, i.e., vertices having eccentricity equal to the diameter. The main results of the paper can be summarized as follows.

Let $r \geq 2$ be a positive integer, G be a k_{r}-connected graph with girth $g \geq r+5$, diameter D and minimum degree $\delta \geq\left\lceil\frac{(r+1)}{2}\right\rceil$. Then G is k_{r}-optimal, provided that one of the following conditions holds:
(1) $D \leq g-7$ and $r \geq 3$;
(2) $D=g-6, r \geq 3, g$ is odd and $\operatorname{Per}(G)$ does not contain any edge;
(3) $D \leq g-4$ and $r=2, \delta \geq 3$;
(4) $D \leq g-4$ and $r=\delta=2, g$ is odd;
(5) $D \leq g-5$ and $r=\delta=2, g$ is even;
(6) $D=g-3$ and $r=2, \delta \geq 3, g$ is even and $\operatorname{Per}(G)$ does not contain any edge.

Referència: Balbuena, C., González-Moreno, D. and Marcote, X. On the 3-restricted edge connectivity of permutation graphs. Discrete Appl. Math., 157(7) (2009), pp. 1586-1591.

Abstract: An edge cut W of a connected graph G is a k-restricted edge cut if $G-W$ is disconnected, and every component of $G-W$ has at least k vertices. The k-restricted edge connectivity is defined as the minimum cardinality over all k-restricted edge cuts. A permutation graph is obtained by taking two disjoint copies of a graph and adding a perfect matching between the two copies. The k-restricted edge connectivity of a permutation graph is upper bounded by the so called minimum k-edge degree. In this paper some sufficient conditions guaranteeing optimal k-restricted edge connectivity and super k-restricted edge connectivity for permutation graphs are presented for $k=2,3$.

