Publicacions més rellevants de la línia de recerca: Espais de moduli de fibrats vectorials i esquemes de Hilbert

Referència: Kleppe, J. and Miró-Roig, R.M. Dimension of families of determinantal schemes, Trans. A.M.S., 357 (2005), 2871-2907.

Abstract

A scheme $X \subset \mathbb{P}^{n+c}$ of codimension c is called standard determinantal if its homogeneous saturated ideal can be generated by the maximal minors of a homogeneous $t \times(t+c-1)$ matrix and X is said to be good determinantal if it is standard determinantal and a generic complete intersection. Given integers $a_{0}, a_{1}, \ldots, a_{t+c-2}$ and b_{1}, \ldots, b_{t} we denote by $W(\underline{b} ; \underline{a}) \subset \operatorname{Hilb}^{p}\left(\mathbb{P}^{n+c}\right)$ (resp. $W_{s}(\underline{b} ; \underline{a})$) the locus of good (resp. standard) determinantal schemes $X \subset \mathbb{P}^{n+c}$ of codimension c defined by the maximal minors of a $t \times(t+c-1)$ matrix $\left(f_{i j}\right)_{j=0, \ldots, t+c-2}^{i=1, \ldots, t}$ where $f_{i j} \in k\left[x_{0}, x_{1}, \ldots, x_{n+c}\right]$ is a homogeneous polynomial of degree $a_{j}-b_{i}$.

In this paper we address the following three fundamental problems : To determine (1) the dimension of $W(\underline{b} ; \underline{a})$ (resp. $W_{s}(\underline{b} ; \underline{a})$) in terms of a_{j} and $b_{i},(2)$ whether the closure of $W(\underline{b} ; \underline{a})$ is an irreducible component of $\operatorname{Hilb}^{p}\left(\mathbb{P}^{n+c}\right)$, and (3) when $\operatorname{Hilb}^{p}\left(\mathbb{P}^{n+c}\right)$ is generically smooth along $W(\underline{b} ; \underline{a})$. Concerning question (1) we give an upper bound for the dimension of $W(\underline{b} ; \underline{a})$ (resp. $W_{s}(\underline{b} ; \underline{a})$) which works for all integers $a_{0}, a_{1}, \ldots, a_{t+c-2}$ and b_{1}, \ldots, b_{t}, and we conjecture that this bound is sharp. The conjecture is proved for $2 \leq c \leq 5$, and for $c \geq 6$ under some restriction on $a_{0}, a_{1}, \ldots, a_{t+c-2}$ and b_{1}, \ldots, b_{t}. For questions (2) and (3) we have an affirmative answer for $2 \leq c \leq 4$ and $n \geq 2$, and for $c \geq 5$ under certain numerical assumptions.

Referència: Costa, L. and Miró-Roig R.M. A counterexample to Douglas-Reinbacher-Yau's conjecture. Journal of Geometry and Physics, 57 (2007), 2229-2233.

Abstract

In "Branes, Bundles and Attractors: Bogomolov and Beyond", by Douglas, Reinbacher and Yau, the authors state the following conjecture: Consider a simply connected surface X with ample or trivial canonical line bundle. Then, the Chern classes of any stable vector bundle with rank $r \geq 2$ satisfy $2 r c_{2}-(r-1) c_{1}^{2}-\frac{r^{2}}{12} c_{2}(X) \geq 0$. The goal of this short note is to provide two sources of counterexamples to this strong version of Bogomolov inequality.

Referència: Miró-Roig, R.M. and Soares, H. Cohomological characterization of Steiner bundles.

Forum Math., 21 (2009), 871-891.

Abstract: A vector bundle E on a smooth irreducible algebraic variety X is called a Steiner bundle of type $\left(F_{0}, F_{1}\right)$ if it is defined by an exact sequence of the form

$$
0 \rightarrow F_{0}^{s} \xrightarrow{\varphi} F_{1}^{t}, \rightarrow E \rightarrow 0
$$

where $s, t \geq 1$ and $\left(F_{0}, F_{1}\right)$ is a strongly exceptional pair of vector bundles on X such that $F_{0}^{\vee} \otimes F_{1}$ is generated by global sections.

Let X be a smooth irreducible projective variety of dimension n with an n-block collection $\mathcal{B}=\left(\mathcal{E}_{0}, \mathcal{E}_{1}, \ldots, \mathcal{E}_{n}\right), \mathcal{E}_{i}=\left(E_{1}^{i}, \ldots, E_{\alpha_{i}}^{i}\right)$, of locally free sheaves on X which generate $D^{b}\left(\mathcal{O}_{X}-\bmod \right)$. We give a cohomological characterisation of Steiner bundles of type ($E_{i_{0}}^{a}, E_{j_{0}}^{b}$) on X, where $0 \leq$ $a<b \leq n$ and $1 \leq i_{0} \leq \alpha_{a}, 1 \leq j_{0} \leq \alpha_{b}$.

